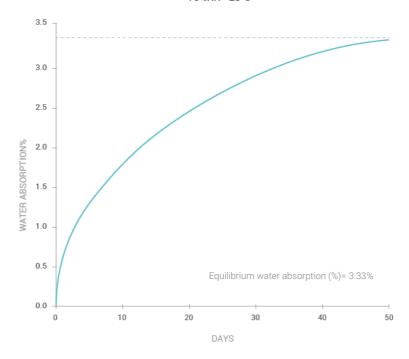


Technical Data Sheet

PolyMide™ PA6-CF

PolyMide™ PA6-CF is a carbon fiber reinforced PA6 (Nylon 6) filament. The carbon fiber reinforcement provides significantly improved stiffness, strength and heat resistance with outstanding layer adhesion.

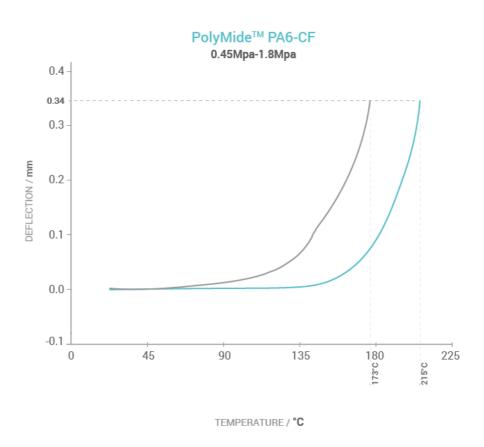
PHYSICAL PROPERTIES


Property	Testing Method	Typical Value
Density	ISO1183, GB/T1033	1.17 g/cm ³ at 23°C
Melt index	300°C, 2.16 kg	20.5 g/10min
Light transmission	N/A	N/A
Flame retardancy	N/A	N/A

CHEMICAL RESISTANCE DATA

Property	Testing Method
Effect of weak acids	Not resistant
Effect of strong acids	Not resistant
Effect of weak alkalis	Slight resistant
Effect of strong alkalis	Not resistant
Effect of organic solvent	Not resistant
Effect of oils and grease	Resistance

MOISTURE ABSORPTION CURVE


PolyMide™ PA6-CF 70%RH - 23°C

THERMAL PROPERTIES

Property	Testing Method	Typical Value
Glass transition temperature	DSC, 10°C/min	74.2 °C
Melting temperature	DSC, 10°C/min	218.5 °C
Crystallization temperature	DSC, 10°C/min	184.6 °C
Decomposition temperature	TGA, 20°C/min	>370 °C
Vicat softening temperature	ISO 306, GB/T 1633	N/A
Heat deflection temperature	ISO 75 1.8MPa	173 °C
Heat deflection temperature	ISO 75 0.45MPa	215 °C
Thermal conductivity	N/A	N/A
Heat shrinkage rate	N/A	N/A

HDT CURVE

MECHANICAL PROPERTIES (Dry status)

Property	Testing Method	Typical Value
Young's modulus (X-Y)	ISO 527, GB/T 1040	7453 ± 656 MPa
Young's modulus (Z)		4354 ± 206 MPa
Tensile strength (X-Y)	ISO 527, GB/T 1040	105. ± 5.0 MPa
Tensile strength (Z)		67.7 ± 4.7 MPa
Elongation at break (X-Y)	ISO 527, GB/T 1040	3.0 ± 0.3 %
Elongation at break (Z)		2.5 ± 0.7 %
Bending modulus (X-Y)	ISO 178, GB/T 9341	8339 ± 369 MPa
Bending modulus (Z)		N/A
Bending strength (X-Y)	ISO 178, GB/T 9341	169.0 ± 4.7 MPa
Bending strength (Z)		N/A
Charpy impact strength (X-Y)	ISO 179, GB/T 1043	$13.34 \pm 0.5 \text{kJ/m}^2$
Charpy impact strength (Z)		N/A

Note:

All specimens were annealed at 80°C for 6h and dried for 48h prior to testing

MECHANICAL PROPERTIES (Moisture Conditioned)

Property	Testing Method	Typical Value
Young's modulus (X-Y)	ISO 527, GB/T 1040	5666 ± 469 MPa
Young's modulus (Z)		4713 ± 282 MPa
Tensile strength (X-Y)	ISO 527, GB/T 1040	81.7 ± 6.0 MPa
Tensile strength (Z)		64.4 ± 5.6 MPa
Elongation at break (X-Y)	ISO 527, GB/T 1040	4.6 ± 0.5 %
Elongation at break (Z)		1.8 ± 0.4 %
Bending modulus (X-Y)	ISO 178, GB/T 9341	6387 ± 1120 MPa
Bending modulus (Z)		N/A
Bending strength (X-Y)	ISO 178, GB/T 9341	152.2 ± 15.7 MPa
Bending strength (Z)		N/A
Charpy impact strength (X-Y)	ISO 179, GB/T 1043	32.8 ± 1.03 kJ/m ²
Charpy impact strength (Z)		N/A

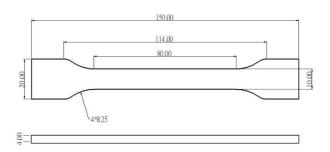
Note:

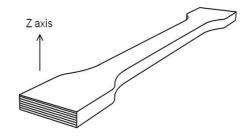
All specimens were annealed at 80 °C for 6h, and conditioned at 70% relative humidity and ambient temperature for 15 days prior to testing.

RECOMMENDED PRINTING CONDITIONS

* Based on 0.4 mm nozzle and Simplify 3D v.4.0. Printing conditions may vary with different nozzle diameters

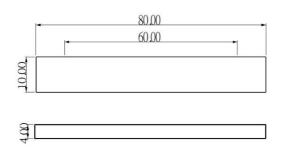
Based on 0.4 min nozzie and simplify 3D v.4.0. Thirting conditions	
Parameter	
Nozzle temperature	280 - 300 (°C)
Build surface material	BuildTak®, Glass, Blue Tape
Build surface treatment	Glue, Magigoo
Build plate temperature	25 - 50 (°C)
Cooling fan	OFF
Printing speed	30-60 (mm/s)
Raft separation distance	0.1-0.2 (mm)
Retraction distance	3 (mm)
Retraction speed	40 (mm/s)
Environmental temperature	Room temperature - 50 (°C)
Threshold overhang angle	45 (°)
Recommended support material	PolyDissolve™ S1

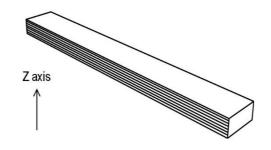

Note:


- Abrasion of the brass nozzle happens frequently when printing PolyMide™ PA6-CF. Normally, the life of a brass nozzle would be approximately 9h. A wear-resistance nozzle, such as hardened steel and ruby nozzle, is highly recommended to be used with PolyMide™ PA6-CF.
- PolyMide™ PA6-CF is sensitive to moisture and should always be stored and used under dry conditions (relative humidity below 20%).
- If PolyMide™ PA6-CF is used as the support material for itself, please remove the support structure before excessive moisture absorption. Otherwise the support structure can be permanently bonded to the model.
- After the printing process, it is recommended to anneal the model in the oven at 80 100°C for 6 hours.

_

TENSILE TESTING SPECIMEN


ISO 527, GB/T 1040



FLEXURAL TESTING SPECIMEN

ISO 178, GB/T 9341

IMPACT TESTING SPECIMEN

ISO 179, GB/T 1043

*All specimens were conditioned at room temperature for 24h prior to testing

Printing temperature	300 °C
Bed temperature	45 °C
Shell	2
Top & bottom layer	4
Infill	100%
Environmental temperature	50°C
Cooling fan	OFF

DISCLAIMER:

The typical values presented in this data sheet are intended for reference and comparison purposes only. They should not be used for design specifications or quality control purposes. Actual values may vary significantly with printing conditions. End- use performance of printed parts depends not only on materials, but also on part design, environmental conditions, printing conditions, etc. Product specifications are subject to change without notice.

Each user is responsible for determining the safety, lawfulness, technical suitability, and disposal/ recycling practices of Polymaker materials for the intended application. Polymaker makes no warranty of any kind, unless announced separately, to the fitness for any use or application. Polymaker shall not be made liable for any damage, injury or loss induced from the use of Polymaker materials in any application.